Collective Anomaly Detection in High-Dimensional Var Models
نویسندگان
چکیده
There is increasing interest in detecting collective anomalies: potentially short periods of time where the features data change before reverting back to normal behaviour. We propose a new method for anomaly VAR models. Our focus on situations coefficient matrix at an sparse, i.e. small number entries change. To tackle this problem, we test statistic local segment that built lasso estimator model parameters. This enables us detect sparse more efficiently and our lasso-based approach becomes especially advantageous when anomalous interval short. show procedure controls Type 1 error has asymptotic power tending one. The practicality demonstrated through simulations two examples, involving New York taxi trip EEG data.
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولAnomaly Detection in Large Sets of High-Dimensional Symbol Sequences
This paper addresses the problem of detecting and describing anomalies in large sets of high-dimensional symbol sequences. 1 The approach taken uses unsupervised clustering of sequences using the normalized longest common subsequence (LCS) as a similarity measure, followed by detailed analysis of outliers to detect anomalies. As the LCS measure is expensive to compute, the first part of the pap...
متن کاملAnomaly Detection in DiaFlux Models
In recent years, the use of graphical knowledge representations more and more proved to be suitable for building diagnostic and therapeutic knowledge systems. When building such systems, the quality assurance of the knowledge base is an integral part of the development process. In this paper, we present the flowchart-based language DiaFlux and we describe a collection of anomalies, that can occ...
متن کاملReal time contextual collective anomaly detection over multiple data streams
Anomaly detection has always been a critical and challenging problem in many application areas such as industry, healthcare, environment and finance. This problem becomes more di cult in the Big Data era as the data scale increases dramatically and the type of anomalies gets more complicated. In time sensitive applications like real time monitoring, data are often fed in streams and anomalies a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2024
ISSN: ['1017-0405', '1996-8507']
DOI: https://doi.org/10.5705/ss.202021.0181